Combining the unique expertise of Prof. Carpentier, known worldwide for inventing today’s most used heart valves, with Astrium’s experience in building satellites, Carmat produced their first completely artificial heart earlier this year.
It turned out that space had the ingredients that Carmat needed. Working closely with satellite engineers, the company applied Astrium’s expertise in building spacecraft to guarantee the necessary precision and durability for an artificial human organ like a heart.
With heart disease killing over 100 million people in developed countries alone and the demand for transplants far exceeding donations, creating a totally artificial heart has been the holy grail of cardiovascular medicine for half a century.
Human trials approval were given by the four international cardiac surgery centers in Belgium, Poland, Saudi Arabia and Slovenia in May 2013.
The French Health Authority has deemed the prosthetic reliable enough to authorise the first human implants at three approved hospitals in Paris in September 2013 and the doctors can now start selecting the first four patients to trial it inside their bodies.
The team had to build a device that could withstand the tough conditions of the body’s circulatory system and pump 35 million times per year for at least five years without fail. They needed the ultimate in reliability, and the answer came from design methodologies, testing strategies and know-how for the electronics on satellites.
“Space and the inside of your body have a lot in common,” says Matthieu Dollon, Head of Business Development in Astrium’s French Elancourt Equipment team, who are working closely with Carmat on the heart. “They both present harsh and inaccessible environments.”
Telecom satellites are built to last 15 years on their own in space, 36 000 km above Earth. The heart might be closer than a satellite but it is just as inaccessible.
“Failure in space is not an option. Nor is onsite maintenance. If a part breaks down, we cannot simply go and fix it. It’s the same inside the body.”
Equally, space engineers tolerate no interruptions or bugs in their electronics. Team member Dung Vo-Quoc, who designed some of the vital electronics for the heart, points out: “If your satellite stops working during the final penalty of the football world cup it’s disappointing. But if a heart stops beating for five seconds, it’s fatal.
“We try hard to make sure that every single part will function as planned for the duration of the device.”
One of the challenges was to create a heart that would beat like the real thing and speed up or slow down depending on its owner’s exertion levels. Space had the answer here, too.
Based on technologies developed for European space projects, the tiny electronics in the prosthetic heart are the equivalent of those on the bus of a telecommunications satellite.
As the first clinical trials on the Carmat heart begin, Mr Dollon adds, “It’s a bit like watching your first ever satellite launch into space on a rocket but even more emotional.”
Whereas satellites are commercial items, the heart is all about giving life: “If this heart made of biological material merged with space technology can help people live better, then we can all feel very proud of that achievement.”
From The Watchers